文章中心ARTICLE CENTER
在發展中求生存,不斷完善,以良好信譽和科學的管理促進企業迅速發展產品中心
PRODUCT CATEGORY相關文章
RELATED ARTICLES
詳細介紹
LSTM)的循環神經網絡RNN,能夠通過遺忘門和輸出門忘記部分信息來解決梯度消失的問題。由LSTM也衍生出了許多變體,較為常用的是門控循環單元(GatedRecurrentUnit,GRU),在訓練數據很大的情況下GRU相比LSTM參數更少,因此更容易收斂,從而能節省很多時間。LSTM及其變體使得識別效果再次得到提升,尤其是在近場的語音識別任務上達到了可以滿足人們日常生活的標準。另外,時延神經網絡(TimeDelayNeuralNetwork,TDNN)也獲得了不錯的識別效果,它可以適應語音的動態時域變化,能夠學習到特征之間的時序依賴。深度學習技術在近十幾年中,一直保持著飛速發展的狀態,它也推動語音識別技術不斷取得突破。尤其是近幾年,基于端到端的語音識別方案逐漸成了行業中的關注重點,CTC(ConnectionistTemporalClassification)算法就是其中一個較為經典的算法。在LSTM-CTC的框架中,后一層往往會連接一個CTC模型,用它來替換HMM。CTC的作用是將Softmax層的輸出向量直接輸出成序列標簽,這樣就實現了輸入語音和輸出結果的直接映射,也實現了對整個語音的序列建模。2012年,Graves等人又提出了循環神經網絡變換器RNNTransducer,它是CTC的一個擴展,能夠整合聲學模型與語言模型,同時進行優化。語音識別的輸入實際上就是一段隨時間播放的信號序列,而輸出則是一段文本序列。山西c語音識別
隨著科學技術的不斷發展,智能語音技術已經融入了人們的生活當中,給人們的生活帶來了巨大的方便,其中很多智能家居都會使用離線語音識別模塊,這種技術的科技含量非常高,而且它的使用性能也非常好,通過離線語音技術的控制,人們不需要有任何的網絡限制,就可以對智能家居進行智能化操控。人們之所以如此的重視智能家居技術,是因為人們生活當中需要智能化來提高生活效率,提高人們的生活質量,所以物聯網發展以離線語音識別模塊為主的技術突飛猛進,并且已經應用到了各個領域當中,在智能化家居當中,智能語音電視,智能冰箱,以及智能照明系統,全部都已經應用了離線語音識別技術。離線語音識別模塊而且這項技術的實用性非常強,隨著技術的不斷創新,離線語音識別的局限性變得越來越小,人們可以不需要和app的操控,不需要連接網絡,就可以通過離線語音識別模塊來進行智能化操控,簡化了使用智能家居的操作流程,而且智能化離線語音識別的能力非常強,應用到家居生活當中,得到了很好的口碑。所以人們如果想要了解更多關于離線語音識別模塊,小編可以分享更多知識,讓人們了解離線語音技術的成熟度,并且在今后的智能家居使用過程當中。山西c語音識別怎么構建語音識別系統?語音識別系統構建總體包括兩個部分:訓練和識別。
語音識別的原理?語音識別是將語音轉換為文本的技術,是自然語言處理的一個分支。前臺主要步驟分為信號搜集、降噪和特征提取三步,提取的特征在后臺由經過語音大數據訓練得到的語音模型對其進行解碼,終把語音轉化為文本,實現達到讓機器識別和理解語音的目的。根據公開資料顯示,目前語音識別的技術成熟度較高,已達到95%的準確度。然而,需要指出的是,從95%到99%的準確度帶來的改變才是質的飛躍,將使人們從偶爾使用語音變到常常使用。以下我們來舉例,當我們說“jin天天氣怎么樣”時,機器是怎么進行語音識別的??2語義識別?語義識別是人工智能的重要分支之一,解決的是“聽得懂”的問題。其大的作用是改變人機交互模式,將人機交互由原始的鼠標、鍵盤交互轉變為語音對話的方式。此外,我們認為目前的語義識別行業還未出現壟斷者,新進入的創業公司仍具備一定機會。語義識別是自然語言處理(NLP)技術的重要組成部分。NLP在實際應用中大的困難還是語義的復雜性,此外,深度學習算法也不是語義識別領域的優算法。但隨著整個AI行業發展進程加速,將為NLP帶來長足的進步從1996年至今,國內至今仍在運營的人工智能公司接近400家。
即識別準確率為,相較于2013年的準確率提升了接近20個百分點。這種水平的準確率已經接近正常人類。2016年10月18日,微軟語音團隊在Switchboard語音識別測試中打破了自己的好成績,將詞錯誤率降低至。次年,微軟語音團隊研究人員通過改進語音識別系統中基于神經網絡的聲學模型和語言模型,在之前的基礎上引入了CNN-BLSTM(ConvolutionalNeuralNetworkCombinedwithBidirectionalLongShort-TermMemory,帶有雙向LSTM的卷積神經網絡)模型,用于提升語音建模的效果。2017年8月20日,微軟語音團隊再次將這一紀錄刷新,在Switchboard測試中將詞錯誤率從,即識別準確率達到,與谷歌一起成為了行業。另外,亞馬遜(Amazon)公司在語音行業可謂后發制人,其在2014年底正式推出了Echo智能音箱,并通過該音箱搭載的Alexa語音助理,為使用者提供種種應用服務。Echo智能音箱一經推出,在消費市場上取得了巨大的成功。如今已成為美國使用廣的智能家居產品,至今累計銷量已超過2000萬臺。投資機構摩根士丹利分析師稱智能音箱是繼iPad之后"成功的消費電子產品"。國內語音識別現狀國內早的語音識別研究開始于1958年,中國科學院聲學所研究出一種電子管電路,該電子管可以識別10個元音。1973年。近年來,該領域受益于深度學習和大數據技術的進步。
先行者叮咚音箱的出師不利,更是加重了其它人的觀望心態。真正讓眾多玩家從觀望轉為積極參與的轉折點是逐步曝光的Echo銷量,近千萬的美國銷量讓整個世界震驚。這是智能設備從未達到過的高點,在Echo以前除了AppleWatch與手環,像恒溫器、攝像頭這樣的產品突破百萬銷量已是驚人表現。這種銷量以及智能音箱的AI屬性促使下半年,國內各大巨頭幾乎是同時轉度,積極打造自己的智能音箱。未來,回看整個發展歷程,是一個明確的分界點。在此之前,全行業是突飛猛進,之后則開始進入對細節領域滲透和打磨的階段,人們關注的焦點也不再是單純的技術指標,而是回歸到體驗,回歸到一種“新的交互方式到底能給我們帶來什么價值”這樣更為一般的、純粹的商業視角。技術到產品再到是否需要與具體的形象進行交互結合,比如人物形象;流程自動化是否要與語音結合;酒店場景應該如何使用這種技術來提升體驗,諸如此類終都會一一呈現在從業者面前。而此時行業的主角也會從原來的產品方過渡到平臺提供方,AIoT縱深過大,沒有任何一個公司可以全線打造所有的產品。語音識別的產業趨勢當語音產業需求四處開花的同時。
原理語音識別技術是讓機器通過識別把語音信號轉變為文本,進而通過理解轉變為指令的技術。山西c語音識別
也被稱為自動語音識別技術(ASR),計算機語音識別或語音到文本(STT)技術。山西c語音識別
我們可以用語音跟它們做些簡單交流,完成一些簡單的任務等等。語音識別技術的應用領域:汽車語音控制當我們駕駛汽車在行駛過程中,必須時刻握好方向盤,但是難免有時候遇到急事需要撥打電話這些,這時候運用汽車上的語音撥號功能的免提電話通信方式便可簡單實現。此外,對汽車的衛星導航定位系統(GPS)的操作,汽車空調、照明以及音響等設備的操作,同樣也可以用語音的方式進行操作。語音識別技術的應用領域:工業控制及醫療領域在工業及醫療領域上,運用智能語音交互,能夠讓我們解放雙手,只需要對機器發出命令,就可以讓其操作完成需要的任務。提升了工作的效率。語音識別技術在個人助理、智能家居等很多領域都有運用到,隨著語音識別技術在未來的不斷發展,語音識別芯片的不敢提高,給我們的生活帶來了更大的便利和智能化。山西c語音識別
產品咨詢